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One of the methods for investigating the motion of the earth’s artificial
satellites is the approximation of the earth’s gravitational potential by
a potential sufficiently close to the potential of the earth. At the same
time the approximating potential is chosen such that the problem could be
solved in quadratures (expansion of the potential into a series of
Legendre polynomials [1,2], potential of two immovable centers [3]). Then
the qualitative analysis of the motion is also simplified.

E.P. Aksenov, E.A. Grebenikov and V.G. Demin believe that to date the
most general of all the considered approximating potentials of the earth
is the potential of two complex conjugate masses located at a certain
complex distance from each other. With kind permission of Aksenov,
Grebenikov and Demin, the author has utilized the formulation of the
"generalized” problem of two immovable centers for investigating the sta-
bility of certain types of orbits for this problem.

1. Formulation of the problem. Let us choose a rectangular system of
coordinates Oxyz with the origin at the center of mass of the attracting
points M1 and M2 such that the :z-axis would lie along the line joining
M1 and M2. The equations of motion for the points can then be written as

P U Py U dz U
dis T 9x dart T oy dit =9z

where the attraction potential is of the form

u_M 14is 1—is »
o2 [Vx’+y’+lz—c(6+i)l’ + Ve+@Etlz—cG—0p ] @b

If M is taken as the mass of the earth, then ¢ and o can be chosen so
that the first three terms of the Legendre polynomial expansion of the
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earth potential would coincide with the potential (1.1).
Let us replace the variables x, y, z by the new variables u, v, w as
follows
X = CcoshU Sinu COSW, Y= CcoshUSinUSINw 2 =G} Csinh¥ COS U (1.2)
In this case the energy and the surface integrals will be of the form
T—U-=h, W eosh?usintu = (1.3)
Here T is the kinetic energy and U the potential in the new variables

e .. . . [Msinhv —G cos u
=3 [(22+ v?)(sinh? v + cos? u) 4- w2 cosh? v sin? u], U= T sinn? 0 costu

Also, let us introduce the new regulating variable T in place of time ¢
dt = (sinh® v -+ cos? u) dt (1.4)

Then, substituting the variables (1.2) and lowering the system order
by two by the use of the first integrals (1.3), we obtain

du fMs | aleosu h . dv M cl’ninhu
lﬁgz?smu—}—m——ﬁsmmt, g = peosht — —o5s +c,nnh20 (1.5)

Since the system of equations of motion is reducible to two independent
equations (1.5) this then permits the investigation of stability with re-
spect to a part of the variables. Furthermore, it can be seen from (1.%19
that in investigating stability 7 will have the same role as ¢.

2. Stability of ellipsoidal orbits. Let us augment the system of equa-
tions (1.5) with the equations

dh/dv =0, de, jdv =0 (2.1)

The system of equations, second in (1.5) and (2.1), permits a particu-
lar solution

U = U, v = O, h= hO, €1 = C10 (22)

This solution exists if v is a root of equation

iM szsinhvo ho
3 coshto — 'm + 'c—zsinhZUD =0

In this case the point will be located on the surface of the ellipsoid

x? y? (2 — ¢3)2

+ +C" sinh? U =1

¢% cosh2 vy | *cosh? Up

The equatorial surface of this ellipsoid coincides with the equatorial
surface of the earth, the semi-axes and the eccentricity of which are
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@ == Ceoshlyp, b == Cvinhty, e == { Jeosh¥y (2.3}

For €19 = 0 the orbit will be polar and elliptic. If it is assumed
that o = 0, then the potential (1.1) becomes

M 1 1
U= 2 [Vx*—i-y‘a—}-tz——cqa‘*‘sz+y2+iz+ci}2] {2.4)

The stability of motion along elliptic orbits in a field with the
potential (2.4) was investigated by Aksenov, Grebenikov and Demin. Since
o is not included in the system of equations (2.1) or in the second equa-
tion in (1.5), the result obtained by the above authors can be utilized.

Let us introduce the following notation for the perturbations:
v=vo4x, U =ux, h=ho+x, of=ct+ x

Then the differential equations for perturbed motion become

dn_ s _o  dn

it =% dt = dt =
dx, M ho + xs {c10% - T x4)xinh(vg -+ Xy)
T7 = ~comh(ve + ) — ——z——sinh2 (vo + x1) — %mﬁwé)‘

which possess the first integrals

. ., 2IM ho - x,
Fy=xg%— “"i;g‘ - fainh{vg + X3) —sinhu] + 2 i‘zﬁ““'snnhz (ve + x3) —
, e €1 -+ Xg 4tn : — i o
—2 & sinb? vg — —5 o F 2 +— P const, Fg == x3 =const, Fg= x¢=const

Following Chetaev [4] we will construct the Liapunov function in the
form of a combination of integrals

1
W=F1—2sinb2voF3+mF3+AgF2‘+A3F3 ==

flMoosha Vo 4ol 2sinh v
3p

= x| ( b, ot vo) 02 - Agxg® 4 Asxg® -+ 2sinh2 vexiXs +m—-h———f g4 ...

Utilizing the Silvester criterion, it is possible to obtain a suffi-
cient condition for which the function W is positive definite, at least
for the small values of x;, x,, x3, x,. This condition will be unique
since the undetermined multipliers 4, and A, are selected so that the ra-

maining conditions of the Silvester criterion are fulfilled. This condi-
tion is

[ Meost® vg 4 ¢t
3sinhve cosh* Vo 2.5)

Since the derivative of the function ¥ is equal to zero then, accord-
ing to a Liapunov theorem [5), the motion (2.2) will be stable with



1700 V.G. Degtiarev

respect to the semi-axes and the eccentricity of the ellipsoid if the
condition (2.5) is fulfilled. By obtaining the sufficient condition for
stability (2.5), Aksenov, Grebenikov and Demin conclude the stability in-
vestigation of the ellipsoidal orbits.

It is easy to show, however, that the inequality (2.5) will always be
fulfilled for real earth satellites. Indeed, taking into account the
notation (2.3), the inequality (2.5) can be written as

as b
M > 4de® — (2.6)
Since b < a, (2.6) will be fulfilled if
fMab > 4cBero? (27)

Let d = r x V, where r and V are, respectively, the radius vector and
the velocity vector of the point, while dlo is the projection of the
vector 4 on the z-axis, corresponding to the initial values (2.2). Then

dio® £ . ' rxV P 3y

=W SF=Ta S7a

Taking the last inequality into account and since r < a it can be
stated that (2.7) will be fulfilled if
fMa® > 4ctV3 2.8)
It follows from the first integral in (1.3) that
z:__Cfi [ 14 is + 1—is ]
27 2 [ VotyPt—cG+OP VEa+ @+ z—cG—0ll
but since the motion takes place in a bounded region them h < 0, 1i.e.

+h

V’</M[ b2 + —
Vea+@+l—co+dP VE+y+lz—cc—-0f

Expanding the right-hand side of the inequality (2.9) into a series
of Legendre polynomials, one can be convinced that if (2.9) is fulfiiled
then V2 < fM/r, but then (2.8) and therefore all the preceding inequal-
ities as well will be fulfilled for r > cJ 2. Since ¢ = 210 km, the last
inequality will be fulfilled for all real earth satellites (r > 6370 km).
Thus, all real ellipsoidal motions of earth satellites are stable with
respect to the semi-axis and the eccentricity of the ellipsoid.

] (2.9)

3. Stability of hyperboloidal orbits. Let us consider the particular
solution of the system — first in (1.5) and (2.1)
u = ug, u' =0, h=hy, €1 =cCwo 3.1

This solution will exist if u, is a root of the equation

fMG . Ci0° COS &y ho .
—F sinug+ —grs - — 22 8in2up =0
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In this case the point will move on the surface of the hyperboloid

x2 ¥ (s =—c3)? 1
A sin? ug + T sintug — cicos? wo

Its real and imaginary semi-axes will be
a; = ¢ sin uy, by =¢ccosug 3.2)

In particular, for €1 =0 the point will move on & certain meridional
hyperbola. Let us denote the values of the variables in perturbed motion
by

u = ug4 2y, u = 3, h = ho + x3, % = ¢y 4 24

Then the differential equations of perturbed motion

ax,, dzy axg

&= &=% m=°
d M c10? -+ x4) cOS (u ) ho+ 2y |
a;?:-chcsin(uo-}-z;)+(w ";m:)wo_é;l;" = = sin2 (w + 7))

possess the first integrals

2/MG Cm*—}-'z" 2fM$
Fy =28 4 ) cos("°+31)+31n*\u,+m1)- - CoSup —
von3
- s;::uo-l-%cos 2ug = const, Fg = 3 = const, Fy = x4 = const (3.3)

In order to prove the stability of the unperturbed motion (3.1) we
construct the Liapunov function, according to Chetsaev [&] , in the form
of a combination of integrals

cos 2 ug 1
W=Fh+—g Fi—gaige Fs + pafad + pafsd

Here g and Hg are arbitrary constants.
Expanding ¥ into & Taylor series in the neighborhood of %y T xy T xy =
x, =0, and retaining terms up to the second order, we obtain
2, 2 CoS ugy
W = pz;® + 23 + pa2a® + Po2dd + 73800 2 UeTyZs — " = oae + .

Since in view of (3.3), the differential of ¥ is equal to zero, then
for stability of the unperturbed motion (3.1) it is sufficient, according
to a Liapunov theorem [5}. that the following inequalities be fulfilled.

betcosug  fMosintu,
b= e — om0 3.4)
sin® 2u, sin® 2uq c08® Uy
Papy — —g— >0, Pa(ﬂ:lh— P ‘)—Hm>0 (3.5

Obviously, if the inequality (3.4) is fulfilled then p, and M3 can be
found such that the inequality (3.5) is also fulfilled. Taking (3.2) into
account, the inequality (3.4) can be rewritten as
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401(,2b163 /1'17‘16012

(l]4 blc

which will be fulfilled since ¢ > 0, by >0, c<o0.

Thus, the hyperboloidal motions are stable with respect to the semi-
axes and the eccentricity of the hyperboloid.

4. Stability of circular orbits. If u = ug, v = vg, then the point
moves on a circle

2% 4 4% = ¢ cosh ? py 3in? wy, z = €5 — Csinh¥g €OS Uy
In this case the point is located on the surface of the ellipsoid and

the hyperboloid, and therefore all real motions of earth satellites are
stable with respect to the radius of the circle.

A special investigation is required for the equatorial circular orbits
(z = ¢0) since then cos uy = 0 and the inequality (3.4) becomes meaning-
less. In order to investigate the stability of the equatorial circular
orbits let us rewrite the potential (1.1) in terms of cylindrical coordi-
nates p, y, 2z

U—f—jz[ 1+is 4 1—is ]
T2 LVl —cGF IR VRt le—c—DP

It is shown in [6] that the circular motions of the considered equa-
torial type p = p,, z = co will be stable if and only if certain inequal-
ities are fulfilled. In this case these inequalities are of the form

fMpo >0 1M (po* — 3¢?)
Vied+ep ~ 7 Ve +
It can be seen from this that the inequalities will be fulfilled for
po > cV3, i.e. for all real satellites of the earth.

>0

The author is greatly indebted to V.G. Demin for the formulation of
the problem and to V.V. Rumiantsev for review of the paper.
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