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One of the methods for investigating the motion of the earth’s artificial 
satellites is the approximation of the earth’s gravitational potential by 
a potential sufficiently close to the potential of the earth. At the same 
time the approximating potential is chosen such that the problem could be 
solved in quadratures (expansion of the potential into a series of 
Legendre polynomials [l, 21, potential of two immovable centers [31) . Then 
the qualitative analysis of the motion is also simplified. 

E.P. Aksenov. E. A. Grebenikov and V. G. Demin believe that to date the 
most general of all the considered approximating potentials of the earth 
is the potential of two complex conjugate masses located at a certain 
complex distance from each other. With kind permission of Aksenov, 
Grebenikov and Demin, the author has utilized the formulation of the 
“generalized” problem of two immovable centers for investigating the sta- 
bility of certain types of orbits for this problem. 

1. Formulation of the problem. Let us choose a rectangular system of 
coordinates Oxyz with the origin at the center of mass of the attracting 
Points Ml and Mg such that the z-axis would lie along the line joining 
Ml and Mg. The equations of motion for the points can then be written as 

d5 au g &I dgt au -=- 
dP ax ’ df’ - ay ’ 

-=- 
dP az 

where the attraction potential is of the form 

.=q 
1 + is i-is 

~x*+y*+[z--c((d+i)Ja + Vx*+y*+lz-c@--)I* 1 0.1) 
If M is taken as the mass of the earth, then c and u can be chosen so 

that the first three terms of the Legendre polynomial expansion of the 
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earth potential would coincide with the potential (1.1). 

Let us replace the variables X, y, z by the new variables U, U, w as 
follows 

x = CcoshU Sin u cos w, y = CcoshV sin u sin w .?=ccr$ csinhvcosu (1.2) 

In this case the energy and the surface integrals will be of the form 

T--U==, ’ w c0sh2vsineu =ci (1.3) 

Here T is the kinetic energy and U the potential in the new variables 

C2 
T= 7j-[(~2+~2)(~i*2v+cosau)+~2c~sh2usin2u], 

“=ffinhV---ocosu 
c rlnhav + cos’u 

Also, let us introduce the new regulating variable T in place of time t 

dl = (sti 2 ZJ + co9 u) dt (1.4) 

Then, substituting the variables (1.2.) and lowering the system order 

by two by the use of the first integrals (1.3)) we obtain 

d2u fM3 h 
~ii - ti sinu + 

c,2 (‘OS u 
p--sin2u, 

d2v fM 
- - sln2 u dr2 - 2coahv - 1) z*“u + $inb2v (1.5) 

Since the system of equations of motion is reducible to two independent 

equations (1.5) this then permits the investigation of stability with re- 

spect to a part of the variables. Furthermore, it can be seen from (1.&g 

that in investigating stability -r will have the same role as t. 

2. Stability of ellipsoidal orbits. Let us augment the system of equa- 

tions (1.5) with the equations 

dhldr = 0, dc, / dz = 0 (2.1) 

The system of equations, second in (1.5) and (2.1). permits a particu- 

1 ar solution 

ZI = vg, v’ = 0, h = ho, Cl = Cl0 (2.2) 

This solution exists if vu is a root of equation 

!A cosh”o _ rrn2,inhvo + !?asi*2vo = 0 
cs cash” Vo C2 

In this case the point will be located on the surface of the ellipsoid 

The equatorial surface of this ellipsoid coincides with the equatorial 
surface of the earth, the semi-axes and the eccentricity of which are 
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a = &ooshu@, & = c#imhvo, e==i/cashvo (2.3) 

For cl,, = 0 the orbit will be polar and elliptic. If it is assumed 
that a = 0, then the potential (1.1) becomes 

(2.4) 

The stability of motion along elliptic orbits in a field with the 
potential (2.4) was investigated by Aksenov, Grebenikov and Demin. Since 
a is not included in the system of equations (2.1) or in the second equa- 
tion in (1.5), the result obtained by the above authors can be utilized. 

Let us introduce the following notation for the perturbations: 

v = 00 + a, v’ = x.& h = ho+ x3, C,f = Cl03 +x4 

Then the differential equations for perturbed motion become 

dwt dxs da -- 
d* - % x=0, --0 

dr - 

dxa fM 
dy = ~~(03 + x1) - 

ho + x3 
--dah2 (vo + Xl) - 

(c103*t- aduo + Xi) 
&, 

cmh3 (00 + Xl) 

which possess the first integrals 

f;l=_Q- 
ZfM 
yg- [3iah(v0+%1)--dph~01+2 h~3inb3(v.+ xx)- 

-2~dnh'v 
cto= + x4 SOS 

o -&xsh* (00 + Xl) 
+ -= const 

c&l3 vo 
? k'P = q = con&, Fe = xa=const 

Following Chetaev [41 we will construct the Liapunov function in the 
form of a combination of integrals 

W=F1- 2ainbavoF~+---r- _i ug F3 + AsF22 + A$2 = 

= xg + 
( 

fW vo 4c102 

1 

2dnbvo 
Psi&v0 -a- xIa + A&* + Asx2 + 23~2 2~1x3 +-T ~4 + . . . 

Utilizing the Silvester criterion, it is possible to obtain a suffi- 
cient condition for which the function W is positive definite, at least 
for the small values of xl, x2’ r3, x4. This condition will be unique 
since the undetermined multipliers A2 and AJ are selected so that the ra- 
maining conditions of the Silvester criterion are fulfilled. This condi- 
tion is 

(2.5) 

Since the derivative of the function W is equal to zero then, accord- 
ing to a Liapunov theorem 151, the motion (2.2) will be stable with 
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respect to the semi-axes aud the eccentricity of the ellipsoid if the 
condition (2.5) is fulfilled. Sy obtaining the sufficient condition for 
stability (2.5), Akseaov,, Qrebealkov and Demla conclude the stability in- 
vestigation of the ellipsoidal orblts. 

It is easy to show, however, that the inequality (2.5) will always be 
fulfilled for real earth satellites. Indeed, taking into account the 
notation (2.3). the inequality (2.5) can be written as 

a0 6 
fM - > 4Crcn,’ 7 E 

Since b d a, (2.6) will be fulfilled if 

/Ma6 > 4&d 

(2.6) 

(2.7) 

Let d = r x V. where r and V are, respectively, the radius vector and 
the velocity vector of the point, while d,, is the projection of the 
vector d on the z-axis, corresponding to the initial values (2.2). Then 

Taking the last Inequality Into account and since r < a it can be 
stated that (2.7) will be fulfilled if 

/Ma= > 4&f’ 

It follows from the first integral in (1.3) that 

(2.8) 

V’ fM i + is 
-=. 
2 L I/s+?+ 12 - c(j+ i)ly 

but since the motion takes place in a bounded region then h < 0, i.e. 

[ 

I + is 1 - is 

VP<fM I/zil+yz+[z-c((a+i)ja+ )/ti+y*+[z-c(s-iill’ I 
WJ) 

Expanding the right-band side of the inequality (2.9) into a serieb 
of Legeadre polynomials, oae can be convinced that if (2.9) is fulfilled 
then V2 < fM/r, but then (2.8) and therefore all the preceding iaequal- 
ltles as well will be fulfilled for r > CJ 2. Since c = 210 km, the last 

Inequality will be fulfilled for all real earth satellites (r > 6370 km). 
Thus, all real elllpsoldal motions of earth satellites are stable with 
respect to the semi-axls aad the ecceatrlclty of the ellipsoid. 

3. Stability of hyperboloidal orbits. Let us consider the particular 
solution of the system - first la (1.5) aud (2.1) 

a = ug, u’ = 0, h=ho, Cl = Cl0 (3.1) 

Tbls solution will exist if u, Is a root of the equatlon 
fMa e,i cos ufj 
7 sin uo + x - $sin&=O 
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In this case the point will move on the surface of the hyperboloid 

Its real and imaginary semi-axes will be 

ul=csinw, b, =ccosuo (3.2) 

In particular, for cl0 = 0 the point will move on a certain meridional 
bperbola. Let us denote the values of the variables in perturbed motion 

by 
u=w+x1, lbf=q, h = ho + *a, c,a = c*o” + x4 

Then the dirferential ewations of perturbed motion 

d21 -4 
dr -xs, ;g-0, z ==o -- 

dx, jMa 
,,sin(uo+~l)+ 

(so’ + to MC3 (uo + Xl) ho + ~a 

dr: = sinOwo+~d 
--sin2(u,+q) 

C* 

possess the first integrals 

F1=5’-k 
2jMa 2jMs 
Tcos(%+ %I + ~i$~~q)-- ep c=uo- 

CIO' 
-sin'uo 

+ $ c0s 2 110 = COB&, Fs = 5 = coust, Fs = x4 = con& (3.3) 

In order to prove the stability of the unperturbed motion (3.1) me 
construct the Liapunov function, aocording to Chetaev Ed, in the form 

0r a combination 0r integrals 

Here i.i2 and I$ are arbitrary constants. 

Expanding II into a Taylor series in the neighborhood Of x1 = x2 = x3 = 

x1 = 0, and retaining terms up to the second order, we obtain 

w=r~~~s+x,~+~~~+*.~+~sin2*~ 
2cosy 

-xuo4 f... 

Since in vien of (3.31, the differential Of I is eUua1 t0 zero. then 
for stability of the anperturbed motion (3.1) it is safficient, aCCOrdiBg 
to a Liapunov theorem 151, that the following inequalities be fulfilled. 

Obviously, ii the inequality (3.4) is rulfllled then 1.4~ and I+ ~811 be 
found such that the inequality (3.5) is also fulfllled. Taking (3.2) into 
account, the inequslitq (3.4) cam be rewritten as 
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4c&?b,c3 j,116a12 -- 
a]; >-xc-- 

which will be fulfilled since c > 0, bl > 0, u < 0. 

Thus, the hyperboloidal motions are stable with respect to the semi- 

axes and the eccentricity qf the hyperboloid. 

4. Stability of circular orbits. If u = II,,, v = vu, then the point 

moves on a circle 

xa + ?/.A = c2 cash ? I’,, sin2 uo, z = cs - CsinhVlJ co.3 ug 

In this case the point is located on the surface of the ellipsoid and 

the hyperboloid, and therefore all real motions of earth satellites are 

stable with respect to the radius of the circle. 

A special investigation is required for the equatorial circular orbits 

(I = C(T) since then cos u,, = 0 and the inequality (3.4) becomes meaning- 

less. In order to investigate the stability of the equatorial circular 

orbits let us rewrite the potential (1.1) in terms of cylindrical coordi- 

nates p, y, z 

(y=L!! 
2 VpZ+[z-c((5$ ip+ I/p’+;z~z:(6-i)]~ [ 

1 + ia 

3 

It is shown in [S] that the circular motions of the considered equa- 

torial type p = po, z = cu will be stable if and only if certain inequal- 

ities are fulfilled. In this case these inequalities are of the form 

It can be seen from this that the inequalities will be fulfilled for 

PO > c 4 3, i.e. for all real satellites of the earth. 

The author is greatly indebted to V.G. Demin for the formulation of 

the problem and to V.V. Kumiantsev for review of the paper. 
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